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Eddy heat fluxes play the important role of transferring heat from low to high latitudes, thus8

affecting midlatitude climate. The recent and projected polar warming, and its effects on9

the meridional temperature gradients, suggests a possible weakening of eddy heat fluxes. We10

here examine this question in reanalyses and state-of-the-art global climate models. In the11

Northern Hemisphere we find that the eddy heat flux has robustly weakened over the last12

four decades. We further show that this weakening emerged from the internal variability13

around the year 2000, and attribute it to greenhouse gas emissions. In contrast, in the South-14

ern Hemisphere we find that the eddy heat flux has robustly strengthened, and we link this15

strengthening to the recent multi-decadal cooling of Southern-Ocean surface temperatures.16

The inability of state-of-the-art climate models to simulate such cooling prevents them from17

capturing the observed Southern Hemisphere strengthening of the eddy heat flux. This dis-18

crepancy between models and reanalyses provides a clear example of how model biases in19

polar regions can affect the midlatitude climate.20
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Main21

One of the largest signals of climate change in recent and future decades is polar amplifica-22

tion: the stronger low-level warming of the poles relative to lower latitudes1, 2. Such an amplifica-23

tion acts to reduce the meridional temperature gradient, and several studies have suggested that the24

recent Arctic amplification has affected midlatitudes extreme weather3–6. However, while no one25

disputes the existence Arctic amplification in recent decades, there is still much debate regarding26

its effects on midlatitudes, since such effects are difficult to separate from the large internal climate27

variability7–16. Here we investigate a new aspect of the possible connection between high latitude28

temperature changes and the midlatitude circulation: the eddy heat flux, which, as shown below,29

exhibits robust and clear trends over the last several decades.30

Eddy heat fluxes have large climatic impacts at midlatitudes. Not only do they play an in-31

tegral role in transferring heat from low to high latitudes, but also in driving the mean meridional32

circulation, and in the initial stages of baroclinic eddy life cycles17–19. To better understand the33

behavior of midlatitude eddies, many previous studies have tried to relate eddy fluxes to the gra-34

dient of the mean fields. For example, using arguments from linear baroclinic instability theory,35

several studies20–22 have tried to relate changes in Eady growth rate to changes in the eddy fields36

(eddies are argued to have a direct relation to the mean temperature gradient). The relation between37

the eddies and the mean gradient was also studied using simple diffusive closures19, 23–25, where the38

poleward eddy fluxes are assumed to be proportional to the mean meridional gradient, for example,39

v′T ′ ∝ −Ty, where v is meridional velocity, T is temperature, the subscript y denotes meridional40

derivative, and over-bar and prime denote mean and eddy terms, respectively. Such closures are41
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also commonly used in baroclinic adjustment theories, where the eddy fluxes act to stabilize the42

baroclinically unstable flow, and keep it marginally supercritical to baroclinic instability26, 27.43

Eddy heat fluxes are known to be more sensitive to lower level changes in temperature gra-44

dient rather than to upper level changes28, 29, as long as the baroclinicity (temperature gradients)45

is concentrated in the lower levels of the atmosphere, and is not controlled by changes in static46

stability30. Thus, the recent (and projected) anthropogenic-induced Arctic amplification would im-47

ply a decline in Northern Hemisphere (NH) meridional eddy heat flux, as a smaller heat transport48

is required to maintain a weaker temperature gradient. In the Southern Hemisphere (SH), on the49

other hand, the recent multi-decadal Southern Ocean cooling would imply a strengthening of eddy50

heat flux. The aim of this work is thus to examine the recent trends in midlatitude eddy heat flux,51

their connection to recent changes in high latitude temperatures, and the role of anthropogenic52

emissions in those trends.53

Southern Hemisphere54

It is instructive to start by considering the hemisphere where polar amplification has, to date,55

not been observed. Fig. 1a shows the SH 1979-2017 annual eddy heat fluxes (v′T ′, calculated from56

daily data, Methods) trends in 13 models of the Coupled Model Intercomparison Project Phase 557

(CMIP5) and in three different reanalyses (Methods). We here use the absolute value of v′T ′, so58

that positive (negative) values indicate strengthening (weakening) in both hemispheres. CMIP559

models (blue bars) show large spread in v′T ′ trends: half of the models simulate a strengthening60

over the last four decades, while the other half simulate a weakening. As a result, the multi-61

model mean (purple bar) show no trend at all. In contrast, the reanalyses (green bars) show a62
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robust strengthening of v′T ′, which is only captured by a few models. This discrepancy between63

reanalyses and models can be further seen in the time evolution, relative to the 1979-1989 period,64

of v′T ′ (Fig. 1c): the strengthening in reanalyses is not captured by climate models, which in fact65

show a monotonic weakening until the end of the 21st century. We next address this discrepancy,66

and elucidate why climate models show such a large spread while reanalyses do not.67

Model spread could stem from two sources: internal variability of the climate system or dif-68

ferences in the model formulations. To determine whether internal variability explains the spread69

across the models, we make use of the Community Earth System Model (CESM) large ensemble70

(LE) (Methods). Fig. 1b is similar to Fig. 1a but shows the 1979-2017 trends in v′T ′ for 40 indi-71

vidual LE members (red bars), and the same reanalyses (green). Most LE members (36) simulate72

a weakening of v′T ′. Only four members show a strengthening, and it is considerably weaker than73

the strengthening in the reanalyses. This suggests that internal variability is likely not the main74

reason for the large spread across the CMIP5 models, and their discrepancy with the reanalyses.75

Note that since the mean of the LE (yellow bar) represents the model’s forced response to anthro-76

pogenic emission (as the internal variability is averaged out), the simulated weakening of v′T ′ is77

part of the forced response, which is projected to continue in coming decades, as can be clearly78

seen in the time evolution of the LE (Fig. 1d).79

We next examine the role of the different model formulations in the modeled trends of v′T ′.80

As discussed in the introduction, one expects a strong coupling between v′T ′ and the meridional81

near-surface air temperature (SAT) gradient: it is thus tempting to relate the discrepancy in v′T ′82

trends between reanalyses and models to the models’ inability to capture the recent multi-decadal83
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cooling of the Southern-Ocean surface temperature31–33. To determine if this relation exists, we84

start by showing in Fig. 2a the correlation between trends in v′T ′ and trends in the meridional85

gradient of SAT (∆ySAT, estimated as the difference between low, 20◦S−40◦S, and high latitudes,86

55◦S − 75◦S) in CMIP5 models (blue), LE members (red) and reanalyses (green). The 39-year87

trends in v′T ′ is highly correlated with trends in ∆ySAT, with r = 0.92 across the CMIP5 models88

(and r = 0.87 when including the LE members and reanalyses as well). Not only a good correlation89

exists between these two quantities, but CMIP5 models which show positive trends in v′T ′ (open90

blue dots) also show positive trends in ∆ySAT, whereas CMIP5 models which show negative91

trends in v′T ′ (filled blue dots) also show negative trends in ∆ySAT. Similarly, most LE members92

show negative trends in both v′T ′ and in ∆ySAT. The reanalyses, which show positive trends in93

v′T ′, also show positive trends in ∆ySAT.94

Next we ask: does the spread in trends in ∆ySAT stem from high or low latitudes SAT95

trends? To answer this, we decompose the trends in ∆ySAT into trends in low and high latitudes96

SAT separately (Fig. 2c). This shows that most of the spread in ∆ySAT indeed stems from high97

latitude temperature trends: while all models and reanalyses show a comparable and positive low-98

latitude warming trend of ∼ 0.01 Kyr−1 (y-axis in Fig. 2c), models with high-latitude warming99

stronger than their low latitude warming (situated below the 1:1 dot-dashed line) show negative100

trends in ∆ySAT and in v′T ′ (filled blue and red dots), whereas models with high latitude warming101

weaker than their low latitude warming (situated above the 1:1 dot-dashed line) show positive102

trends in ∆ySAT and in v′T ′ (open blue dots). Unlike most models, reanalyses show high latitude103

cooling trends over the last decades (green dots), which are consistent with the robust positive104
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trends in ∆ySAT and in v′T ′ (Fig. 2a). Although causality arguments cannot be made based105

on correlation alone, these results clearly suggest that the model spread in v′T ′ trends, and their106

partial inability to capture the v′T ′ trends in reanalyses, might indeed stem from biases in simulated107

surface temperature at high latitudes.108

To further examine the model biases in high latitude temperature, and to ascertain whether109

the reanalyses are indeed unaffected by such biases (reanalyses might also have biases in model110

formulations), we next compute temperature trends from observational data sets that are untainted111

by any model biases: we show the NOAAGlobalTemp, GISTEMP and HadCRUT4 trends (gray112

dashed lines and gray dots in Fig. 2a and c, respectively) (Methods). The high latitude cooling113

and the positive trends in ∆ySAT in reanalyses are also present in all three observational data sets.114

Given the good correlation between ∆ySAT and v′T ′, this agreement between the reanalyses and115

observations further corroborates our interpretation that the robust observed strengthening of v′T ′116

is not an artifact of the reanalyses, and that the large spread across the models stems from biases in117

temperature at high southern latitudes. Interestingly, the fact that some models do not capture the118

high latitude cooling but do show positive trends in v′T ′ (open blue dots) indicates that in order for119

high latitude model biases in surface temperature to affect v′T ′ at midlatitudes it needs to be large120

enough to change the sign of the temperature gradient trend.121

Finally, we demonstrate that if one corrects the models’ surface temperature biases one ob-122

tains the same robust strengthening of v′T ′ found in the reanalyses. For this we make use of a123

10-member ensemble of CESM atmosphere-only runs (Global Ocean Global Atmosphere, LE-124

GOGA) simulations, which prescribed observed surface temperature (Methods). Fig. 2b is similar125
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to Fig. 1b but shows the last available 37-year (1979-2015) trends in v′T ′ in both the LE-GOGA126

and reanalyses. Unlike the ocean-atmosphere coupled LE runs, which show a weakening in v′T ′,127

when the sea surface temperatures (SSTs) and sea-ice are prescribed from observations all mem-128

bers show a strengthening in v′T ′ (red bars), similar to the strengthening in the reanalyses (green129

bars). The strengthening of v′T ′ across all GOGA members can be further seen in the time evo-130

lution of v′T ′, which accompanies the evolution in the reanalyses (Fig. 2d). This confirms our131

interpretation that high latitude biases in simulated surface temperature affect the midlatitude cli-132

mate trends.133

Northern Hemisphere134

In contrast to the robust observed strengthening in the SH, v′T ′ in the NH reanalyses show135

a robust weakening over the last four decades (1979-2017) (green bars in Fig. 3a). Relative to the136

1979-1989 period, by 2017 v′T ′ has weakened by ∼ 6%, and is projected to weaken by ∼ 20%137

by the end of the 21st century (Fig. 3c). In addition, unlike the large model spread in the SH, in138

the NH most CMIP5 models agree on the sign of trends, and also simulate a robust weakening139

between 1979-2017 (blue bars in Fig. 3a). As a result the multi-model mean (purple bar) also140

shows a weakening of 0.01 Kms−1yr−1. As discussed in the introduction, such a weakening is141

consistent with the reduction in the meridional temperature gradient and warming of the Arctic.142

Fig. 4a shows that the weakening of v′T ′ is also correlated with the reduction in ∆ySAT (estimated143

as the difference between low, 20◦N−40◦N, and high latitudes, 65◦N−85◦N) with r = 0.62 across144

the CMIP5 models (and r = 0.51 when including the LE members and reanalyses as well). As in145

the SH, the spread in ∆ySAT is mostly due to the warming of high latitudes (Arctic), and not due146
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to the warming of low latitudes (Fig. 4c). The lower correlation between v′T ′ and ∆ySAT in the147

NH than in the SH may be related to the fact that the longitudinal distribution of Arctic warming148

is different than that of v′T ′, and from the effects of static stability on v′T ′30.149

Is the NH weakening of v′T ′ is part of the forced response to anthropogenic emissions, or150

merely part of the internal variability of the climate system? First, the fact that all CMIP5 models151

project that such a weakening will continue in coming decades (Fig. 3c) suggests that the recent152

decline in reanalyses constitutes part of the emerged forced response to anthropogenic emissions.153

Second, in order to quantitatively answer such a question one has to disentangle the forced response154

from the internal variability. Thus, we again make use of the CESM LE, where the spread across its155

members is due to internal variability alone, and the mean of the ensemble is the forced response.156

Fig. 3b shows the NH v′T ′ 1979-2017 trends in the LE members (red) and reanalyses (green).157

Similar to the reanalyses and CMIP5 models, all LE members (except one) show a weakening in158

v′T ′. As a result, the mean of the LE (yellow bar) also shows a weakening, which is approximately159

half of the weakening in the reanalyses. Assuming that the LE realistically simulates the internal160

variability of the climate system, this would indicate that the recent decline in v′T ′ is partially (half)161

due to anthropogenic emissions: the other half is due to internal variability. As the weakening is162

projected to continue in coming decades across all LE members (Fig. 3d), one suspects that the163

recent decline might constitutes the emergence of the forced response to anthropogenic emissions.164

We next analyze this question.165

The “time of emergence” has been used in previous studies to identify when a forced signal166

appears as distinct from the internal variability (the noise)34, 35. While different studies have used167
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different definitions for the signal and the noise, in all studies the time of emergence is estimated as168

the time when the signal exceeds a certain threshold (usually one standard deviation) of the internal169

variability, defined as the noise. To assess whether an anthropogenic signal can be detected in the170

recent trends of v′T ′ we here use two different approaches for estimating the time of emergence.171

In the first, following previous studies35, we use the time evolution relative to a reference172

period (here we choose 1979-1989) of the LE in order to define the signal and the noise. The173

signal is defined as the time evolution of the LE mean, and the noise as the time evolution of one174

standard deviation across all members. Using this approach the forced signal emerges out of the175

internal variability by 2009.176

In the second approach we estimate the time of emergence for each realization separately,177

in both the LE and reanalyses, by comparing the signal to a distribution that lacks the forced178

response34, 36. The signal is computed as trends over different lengths in each realization, and179

the noise as one standard deviation across all trends with corresponding lengths in the CESM180

preindustrial control run (Methods). Following previous studies36, we use this same noise for181

calculating the time of emergence in both the LE and reanalyses. The trends are first calculated for182

each member and reanalysis over 10 years (from 1979 to 1988) and then over consecutive lengths183

of trends (from 1979 to 1989,1990...) until the signal emerges.184

Fig. 4b shows the distribution of the time of emergence across the LE members (red bars).185

By 2010 most (74%) of the LE members show that the signal has emerged. The mean of the LE186

emerges by 2009 (yellow vertical line), which is similar to the emergence of the forced response187

estimated by the first approach. Not only the LE shows that the signal of the weakening in v′T ′188
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has already emerged, but also the reanalyses: the green vertical lines in Fig. 4b show that in all189

reanalyses the weakening in v′T ′ has already emerged out of the internal variability during the190

90’s. By 2017 v′T ′ trends in reanalyses could not be explained using the sole presence of internal191

variability, attesting they constitute the forced signal (Supplementary Fig. 2). Calculating both the192

signal and noise of the reanalyses using their time evolution34, rather than using the preindustrial193

control run, yields the same time of emergence.194

Is the forced signal that has been detected in the recent weakening of NH v′T ′ anthropogenic195

or natural? To answer that we make use of a 20-member ensemble, which is identical to the LE196

simulations, but forced without the time varying greenhouse gases (LE-fixGHG, Methods). We197

start by showing the LE-fixGHG mean time evolution, relative to the 1979-1989 period, of v′T ′198

(black line in Fig. 3d). Fixing the greenhouse gases results in no forced v′T ′ weakening in NH in199

recent and coming decades, attesting that the recent observed weakening in v′T ′ can be attributed200

to the increase in greenhouse gases. Similarly, comparing the observed 1979-2017 trends in NH201

v′T ′ with the trends in the LE and LE-fixGHG shows that without the time varying greenhouse202

gases one cannot explain the recent weakening in NH v′T ′ (Fig. 4d).203

In summary, if the recent changes in v′T ′ (weakening in NH and strengthening in SH) are to204

continue in coming decades, they will further impact the midlatitudes climate as v′T ′ are a major205

player in midlatitudes circulation. Moreover, since v′T ′ trends are linked to polar temperature206

trends, it will be important to correct the high latitude temperature trend biases in the models,207

specifically in the SH, in order to produce accurate projections of midlatitudes climate.208
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Methods209

To examine the recent behavior of the annual eddy heat fluxes in reanalyses and models we210

make use of daily temperature and meridional wind data, and compute v′T ′, where bar and prime211

denote zonal and monthly averages, and deviation therefrom, respectively. As v′T ′ is maximum at212

midlatitudes and in the lower part of the troposphere we average it from the surface to 700 mb and213

between 40◦−70◦ in the NH, and between 40◦−60◦ in the SH. We limit the averaging in the SH to214

60◦ in order to avoid artificial near-surface values in pressure interpolated fields over the Antarctic215

continent (Supplementary Fig. 1).216

Reanalyses217

The eddy heat flux is analyzed across 4 different reanalyses: The ECMWF Era-Interim37 (ERA-I),218

NCEP/DOE Reanalysis II38, JRA-5539, and CFSR V240. Due to strong biases in SH midlatitude219

eddies41–43, we here only analyze the NCEP data in the NH.220

CMIP5 models221

We also analyze 13 models that participate in the Coupled Model Intercomparison Project Phase222

544 (CMIP5), between 1950-2100 under the historical and RCP8.5 scenarios (Supplementary Ta-223

ble 1). Although a few models other than those listed have made daily data needed for calculating224

v′T ′ available, those models show large low-level biases in v′T ′, and thus we have excluded them225

from our analysis.226

Large ensemble of model simulations227

In order to disentangle the forced response to anthropogenic emissions from internal variability,228

and determine whether recent trends have emerged out of the internal variability, we analyze four229
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experiments with the Community Earth System Model (CESM). The first, is an ocean-atmosphere230

coupled large ensemble (LE) that consists 40 simulations (members) with the same historical and231

RCP8.5 scenarios as for the CMIP545. The sole difference across the members of the LE is a232

slight perturbation in the initial condition: each member is initialized with a random difference in233

atmospheric temperature (O10−14K). The second is a 10-member ensemble of atmosphere-only234

runs (Global Ocean Global Atmosphere, LE-GOGA), which are also forced by the historical and235

RCP8.5 scenarios between 1880-2015. In these simulations the sea surface temperature (SST) and236

sea-ice are prescribed based on the NOAA ERSSTv446 and the Hadley Centre HadISST47 data sets,237

respectively. The third, is an ocean-atmosphere coupled 1800-year preindustrial control simulation238

(LE-PI); since the radiative forcing is fixed at year 1850, only internal variability is present in that239

simulation. The fourth experiment is an ocean-atmosphere coupled large ensemble that consists240

20 members with the same historical and RCP8.5 scenarios as for the CMIP5 between 1920-2080,241

but without time-evolving greenhouse gases (LE-fixGHG).242

Observations243

Monthly mean near-surface air temperature (SAT) from all above reanalyses and CMIP5 models244

are validated against three different observed surface temperature data sets: the NOAAGlobal-245

Temp, the GISTEMP v348, and the HadCRUT449. These data sets use a combination of satellite246

and in-situ measurements to produce global surface temperature over land and ocean.247
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Figure 1: SH v′T ′ trends and time series. SH 39-year (1979-2017) trends (upper row,

10−2 Kms−1yr−1) and time series, relative to the 1979-1989 period (bottom row, Kms−1), of v′T ′

in CMIP5 models (left column, blue colors with multi-model mean in purple) and LE members

(right column, red colors with mean in yellow). In all panels green symbols represent the reanaly-

ses. The asterisks in (a) and (b) indicate that the trends are statistically significant (p-values lower

than 0.05), and the error bars show the standard error of linear regression coefficient.
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Figure 2: SH v′T ′ and TAS relation. (a) 39-year (1979-2017) trends in SH v′T ′

(10−2 Kms−1yr−1) as a function of the trends in SH meridional gradient of SAT (∆ySAT). Correla-

tions appear at the upper left corner. (b) 37-year (1979-2015) trends in SH v′T ′ (10−2 Kms−1yr−1)

in GOGA members. The asterisks in (b) indicate that the trends are statistically significant (p-

values lower than 0.05), and the error bars show the standard error of linear regression coefficient.

(c) 39-year (1979-2017) trends in SH low latitude SAT as a function of high latitude SAT trends.

The dot-dashed line shows the 1:1 ratio. (d) Time series, relative to the 1979-1989 period, of SH

v′T ′ in the GOGA simulations. In panels (a) and (c) blue, red, green and gray symbols represent

the CMIP5 models, LE members, reanalyses, and observed SAT data sets, respectively. The open

(filled) blue dots are CMIP5 models which simulate a strengthening (weakening) of SH v′T ′ over

1979-2017. In panels (b) and (d) red, yellow and green symbols represent the GOGA members,

their mean, and the reanalyses, respectively.
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Figure 3: NH v′T ′ trends and time series. NH 39-year (1979-2017) trends (upper row,

10−2 Kms−1yr−1) and time series, relative to the 1979-1989 period (bottom row, Kms−1), of v′T ′

in CMIP5 models (left column, blue colors with multi-model mean in purple) and LE members

(right column, red colors with mean in yellow). In all panels green symbols represent the reanaly-

ses. The asterisks in (a) and (b) indicate that the trends are statistically significant (p-values lower

than 0.05), and the error bars show the standard error of linear regression coefficient. The black

line in (d) shows the time series of mean LE-fixGHG simulation.
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Figure 4: Detection and attribution for NH v′T ′ and TAS relation. (a) 39-year (1979-2017)

trends in NH v′T ′ (10−2 Kms−1yr−1) as a function of the trends in NH meridional gradient of

SAT (∆ySAT). Correlations appear at the upper left corner. (b) The occurrence frequency (in

percentage) of the time where the weakening of NH v′T ′ emerges out of the internal variability in

the LE members (red bars). The vertical yellow and green lines show the time of emergence of

the mean LE and reanalyses, respectively. (c) 39-year (1979-2017) trends in NH low latitude SAT

as a function of high latitude SAT trends. The dot-dashed line shows the 1:1 ratio. (d) 39-year

(1979-2017) trends in NH v′T ′ (10−2 Kms−1yr−1) in reanalysis, LE and LE-fixGHG. The error

bars show the standard error of linear regression coefficient. In panels (a) and (c) blue, red, and

green symbols represent the CMIP5 models, LE members and reanalyses, respectively.
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